Rainfall Prediction Using Neural Fuzzy Technique
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Abstract: This paper constructs numeral fuzzy rule bases with the aid of Self-organising Map
(SOM) and Backpropagation Neural Networks (BPNNs). These fuzzy rule bases are then used
to perform the spatial interpolation on the 367 rainfall data in Switzerland based on the
information found in the nearby 100 locations. The SOM is first used to classify the data. After
classification, BPNNs are then use to learn the generalization characteristics from the data
within each cluster. Fuzzy rules for each cluster are then extracted. The fuzzy rules bases are
then used for rainfall prediction.
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1. INTRODUCTION

Acrtificial Neural Networks (ANNSs) have emerged as an option for spatial data analysis
(Friedman, 1994; Lee et. al, 1998). The observation sample that is used to derive the predictive
model is known as training data in an ANN development. The independent variables, or the
predictor variables, are known as the input variables and the dependent variables, or the
responses, are known as the output variables.

In supervised learning (Kartalopulos, 1996), an ANN makes use of the input variables and
their corresponding output variables to learn the relationship between them. Once found, the
learned ANN is then used to predict values for the output variables given some new input data
set. For unsupervised learning, an ANN will only make use of the input variables and attempts
to arrange them in a way that is meaningful to the analyst.

ANN analysis is quite similar to statistical approaches in that both have learning algorithm
to help them realise the data analysis model. However, an ANN has the advantages of being
robust with the ability to handle large amounts of data. Novice users can also easily understand
the use of an ANN. An ANN also has the ability to handle very complex functions (Cherkassky
et. al, 1994). The main limitation of using ANN is that the data analysis model built may not be
able to be interpreted.

Fuzzy logic is also becoming popular in dealing with data analysis problems that are
normally handled by statistical approaches or ANNs (Kosko, 1997). However, conventional
fuzzy system systems do not have any learning algorithm to build the analysis model. Rather,



they make use of human knowledge, past experience or detailed analysis of the available data by
other means in order to build the fuzzy rules for the data analysis. The advantages of using
fuzzy system are the ability to interpret the analysis model built and to handle fuzziness in the
data. The data analysis model can also be changed easily by modifying the fuzzy rule base. The
major limitation is the difficulty in building the fuzzy rules due to lack of learning capability.

ANNs and fuzzy logic are complementary technologies in designing an intelligent data
analysis approach (Williams, 1994). That suggests combining the two (Nauck, 1995). For
example, fuzzy logic could be used to enhance the learning capabilities or performance of the
neural network. In another approach, a neural network and fuzzy system could be integrated into
a single architecture. However, a human analyst may still have difficulties understanding the
analysis model computed. Analysis of the prediction model is also very time consuming.
Therefore, it was one of the prime objectives of the paper presented to find a better way of
combining the advantages of the ANN and fuzzy logic such that these particular problems could
be overcome.

2. NEURAL FUZZY SPATIAL INTERPOLATION

ANN and fuzzy logic are complementary technologies for the designing of spatial
interpolation tools. However, there are many ways that the combination can be implemented
(Nauck, 1995). Table 1 shows the different ways that ANN and FL can work together. It is
important to observe the characteristics under each class so as to search for a better technique
that the analyst will be comfortable with.

Table 1: Different ways to combine ANN and fuzzy logic

Techniques Description
Fuzzy Neural Networks Use fuzzy methods to enhance the
learning capabilities or performance of
ANN

Concurrent Neuro-Fuzzy ANN and Fuzzy systems work together
on the same task without any influence
on each other

Cooperative Neuro-Fuzzy | Use ANN to extract rules and then it is
not used any more

Hybrid Neuro-Fuzzy ANN and Fuzzy are combined into one
homogeneous architecture

The Cooperative Neuro-Fuzzy technique is selected as the more appropriate technique to be
used in this application. The reasons are as follow. As the BPNN can generalise from the data
through some learning algorithm, the spatial interpolation function could be realised
automatically. This will also enable the fuzzy rules to cover the whole universal of discourse, so
that they can be used to approximate data that are not present in the training set. As fuzzy rules
are closer to human reasoning, the analyst could understand how the interpolation model
performs prediction. If necessary, the analyst could also make use of his/her knowledge to
modify the interpolation model.



2.1 Self-organising Map (SOM)

In most spatial analysis, the first step is to classify the available data into different classes so
that the data are split into homogeneous sub-populations (Lee et. al, 1998; Huang et. al, 1998;
Fung et. al, 1997). The objective in this step is to make use of an unsupervised learning
algorithm to sub-divide the whole population. Self-organising Map (SOM) is selected for this
purpose mainly because it is a fast, easy and reliable unsupervised clustering technique.

SOM s designed with the intention to closely simulate the various organisations found in
various brain structures and has a close relationship to brain maps (Kohonen, 1990; Kohonen,
1995). Its main feature is the ability to visualise high dimensional input spaces onto a smaller
dimensional display, usually two-dimensional. In this discussion, only two-dimensional arrays
will be of interest. Let the input data space #" be mapped by the SOM onto a two-dimensional
array with i nodes. Associated with each i node is a parametric reference vector
mi=[ i, thiz, ... .pi2]" € 9, where g is the connection weights between node i and input j.
Therefore, the input data space 9" consisting of input vector X=[x1,Xz,...x]", ie X e 9, can be
visualised as being connected to all nodes in parallel via a scalar weights ;. The aim of the
learning is to map all the n input vectors X, onto m; by adjusting weights z such that the SOM
gives the best match response locations.

SOM can also be said to be a nonlinear projection of the probability density function p(X) of
the high dimensional input vector space onto the two-dimensional display map. Normally, to
find the best matching node i, the input vector X is compared to all reference vector m; by
searching the smallest Euclidean distances || X — m; ||, signified by c. Therefore,

c=argmin{|| X —m; |[} 1)

or
[l X —mg [[=ming[} X —m |} )

During the learning process, beside the node that best matches the input vector X is allowed
to learn, those nodes that are close to the node up to a certain distance will also be allowed to
learn. The learning process is expressed as:

m; (t+1) =m; () + he; OLX ©) —m; ()] ®)

where t is discrete time coordinate
and hgi(t) is the neighbourhood function

After the learning process has converged, the map will display the probability density
function p(X) that best describes all the input vectors space. At the end of the learning process,
an average quantisation error of the map will be generated to indicate how well the map matches
the entire input vectors X,. The average quantisation error is defined as:

E=[lIX-mg|? p(X)dX (4)

After the 2-dimensional map has been trained, the reference vectors that were used in the
nodes of the map can also obtain. In spatial interpolation, the output value is the interested
feature from the neighbouring location, we proposed here to construct the clustering boundaries
based on the output reference vector of the nodes. The rule of thumb for deciding on the
clustering boundaries is mainly by performing the distance measure between the neighbouring



reference values. If the distance measure between the present reference node and the
neighbouring nodes is high, that suggests another cluster.

2.2 Backpropagation Neural Network (BPNN)

After the set of available training data has been sub-divided, BPNN are trained in each
cluster to predict only data within the cluster. Therefore, if SOM identified ¢ clusters, then ¢
number of BPNNSs need to be trained. When a BPNN (Rumelhart et. al, 1986) is used in spatial
analysis, the observations obtained from the neighbouring are used as the training data, thus it is
a supervised learning technique. The input neurons of the BPNN in this case correspond to the x
and y position coordinates, and the output neuron is assigned to z, the rainfall measurement. The
BPNN has a number of layers. The input layer consists of all the input neurons and the output
layer just the output neuron. There are also one or more hidden layers. All the neurons in each
layer are connected to all the neurons in next layer with the connection between two neurons in
different layers represented by a weight factor.

The objective of training the BPNN is to adjust the weights so that the application of a set of
inputs interpolates the output. When BPNN performs learning, a calculation is done to obtain
the actual output set by proceeding in order from the input layer to the output layer. At the
output, the total error on each output neuron, which is the sum of squares of the differences
between the desired output and the computed output is calculated. This value is used in a
learning algorithm to update the weights and the process is back propagated through the
network. In order to avoid the BPNN from memorising, cross validation is used to ensure its
generalization capability.

Once the modification of all the connection weights is done, a new set of outputs can be
computed and subsequently a new total error will be obtained. This back-propagated process
repeats until the value of the total error is below some particular threshold. At this stage, the
BPNN is considered to have learned the function. After the BPNN has learned and generalised
from the training data, it is then used to construct the fuzzy rules bases.

2.3 Fuzzy Rule Extraction

As all the BPNNs have generalized from the training data, the next step is to extract the
knowledge learned by the BPNNS. In this case, it is the same as the previous section, we will
have to extract ¢ number of fuzzy rules bases.
The following algorithm outlines the steps in extracting the fuzzy linguistic rules for one BPNN.
As we have to extract fuzzy rules that can cover the whole universal of discourse in order to
cover the whole sample space as seen by the BPNN, for T membership functions or linguistics

terms, we would have T2 fuzzy rules as we have only two variables (x, y) in this case.

Randomly generate input variables that could cover all the possible input space as seen by the
BPNN and fed it into the BPNN to obtain the rainfall measurements predicted by the BPNN.



For the two inputs (X, y), the BPNN generated input (X, y)-output (z) data pairs with n patterns
are:

(xhyhzh)

(x2,y%2%)
(x",y"z")

The number of linguistics terms T used in this fuzzy rule extraction has to be the same as the
predetermined one when generating output from the BPNN. The distribution of the membership
functions in each dimension of the domain in this case is evenly distributed. For ease of
interpolation and computational simplicity, the shape of the membership functions used in this
rule extraction technique is triangular. In this case, we will obtain for every xe X ,

A X —>[01] (5)

After the fuzzy regions and membership functions have been distributed, the available input-
output pairs will be mapped. If the value cuts on more than one membership function, the one
with the maximum membership grade will be assigned to the value:

Ry =[x" (A, max), y" (A, max):z"(B,,max)]  (6)

After all the input-output values have been assigned a fuzzy linguistic label, Mamdani type
fuzzy rules are then formed (Mamdani and Assilian,1975).

After the fuzzy rules base corresponding to the BPNN for a class has been constructed, the
BPNN is not used anymore when performing spatial interpolation. With these set of fuzzy rules,
human analyst can now examine the behaviour of the interpolation. Changes and modification
can then be performed if necessary. The fuzzy rules extracted can also handle fuzziness in the
data and thus may improve the performance of the spatial interpolation. Figure 1 shows the
block diagram of establishing the spatial interpolation model and Figure 2 shows the block
diagram of the performing the spatial interpolation.

3. RAINFALL PREDICTION

In this case study, the data available from the AI-GEOSTATS mailing list in Italy (Dubois,
1998) is used. The data is collected on 8" May 1996 in Switzerland. 100 data locations are used
as the training data and the other 367 locations data are then used to verify the prediction
accuracy of the established spatial interpolation model. The two input variables used in this case
is the 2D coordinate position (X, y); and the output used is the rainfall measurements (z). The
digital elevation model (DEM) (v) is also available but was not used in the case study. The 100
training data points are fed into the SOM for unsupervised clustering. After clustering, the
vector map for the output (z) is as shown in Figure 3. In this case study, we have use 10 by 10
two-dimensional map. 10 by 10 map was selected by examining the average quantisation error.
After performing the cluster boundaries determination, the classes are formed as shown in
Figure 4.
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Figure 2: Performing spatial interpolation from the fuzzy rules bases
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Figure 3: The SOM vector map for rainfall measurement
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Figure 4: The cluster boundaries on the SOM 2-dimensional map

Before feeding into individual BPNN, the data need to be normalized between 0 and 1.
Linear normalization is used with maximum and minimum vales unique to the class. In this case,
the SOM identified a total of 8 classes. After the data has been normalized, 8 BPNNSs are trained
to handle their own sub-population.

After examining the maximum and minimum value of each class, the appropriate number of
membership used is determined to be 7. In this case, the number of fuzzy rules extracted for
each BPNN (each class) is 49, i.e. 72. Part of the fuzzy rules used in class 1 are shown in Figure
5, where EL is extreme low, VL is very low, L is low, M is middle, H is high, VH is very high,
and EH is extreme high. With the distribution information for each linguistics term, the user can
easily understand the set of fuzzy rules and understand how the prediction is performed.

If x= VVL and y= EL then z= VL
If x= VVL and y= VL then z= VL
If x= VVL and y= L then z= VL
If x= VVL and y= M then z= VH
If x= VVL and y= H then z= VH
If x= VVL and y= VH then z= M
If x= VVL and y= EH then z= EL
If x= VL and y= EL then z= H
If x= VL and y= VL then z= H
If x= VL and y= L then z= L
If x= VL and y= M then z= M
If x= VL and y= H then z= VH
If x= VL and y= VH then z= H
If x= VL and y= EH then z= VL
If x= L and y= EL then z= VH

Figure 5: Part of the fuzzy rules used to predict class 1 rainfall.

After all the 8 fuzzy rules bases have been constructed, the rainfall for the 367 locations in
the testing set can then be interpolated. The minimum, maximum, mean, median and standard
deviation of the 367 observed data and the interpolated data are tabulated in Table 2. The ten
highest and lowest values of the predicted Z are shown in Table 3. The relative mean absolute
error (MAE), root mean square error (RMSE), the correlation measure, and the relative error
between the predicted and observed rainfall are shown in Table 4. Figure 6 gives a cross plot of
the predicted rainfall and the observed rainfall.
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Table 2: Comparison between observed and predicted rainfall

Observed Z Predicted Z
Min 0 12
Max 517 467
Mean 185 194
Median 162 163
Standard deviation 111 110

Table 3: The ten highest and lowest values.

10 lowest value 10 highest value
Observed Predicted Observed Predicted
0 12 517 467
0 29 503 446
0 31 493 375
0 45 445 360
0 72 444 395
1 51 434 393
5 13 434 341
6 13 432 375
8 12 429 378
13 13 415 405

Table 4: Error measures between the predicted and observed rainfall.

MAE 53.86
RMSE 72.95
Correlation Measure 0.784
Relative Error 0.31
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Figure 6: Plot of the 367 predicted rainfall and the observed rainfall.
(Note: The x-axis is the observed rainfall and the y-axis is the predicted rainfall)
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4. CONCLUSION

In this paper, a spatial interpolation technique has been used to predict rainfall in Switzerland.
This technique uses SOM to perform clustering so as to sub-divide the whole sample space into
homogenous sub-population. After the classification boundaries have been identified, the whole
training data set is then sub-divided into the respective classes. BPNN corresponding to each
individual class is then trained using cross-validation approach. After all the BPNN has been
trained, fuzzy rules bases for each class are then constructed. The case study used has shown
that this method can produce reasonable rainfall prediction. The advantages of using this
technique are as follow. First it makes use of the robustness and learning ability of the ANN to
sub-divide and generalized from the training data. After which, the learned underlying function
is then translated into fuzzy rules. With the use of fuzzy rules, the interpretability and the ability
of handling fuzziness has enhanced the interpolation model. Most important of all, this
technique put forward a self-learning and self-explanation spatial interpolation technique. The
next phase of this research can emphasis on examining the human understandable fuzzy rules in
improving the prediction results.
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